The following table includes values for the dielectric properties for all tissues at a specific frequency. The dielectric parameters are based on the Gabriel dispersion relationships1.
Enter a frequency between 10 Hz and 100 GHz and press the 'Go' button.
Source: For tissues for which no measurements have been published, values from similar tissues were assigned. The 'Source' column shows the material assignment used for each entry
Frequency
expBody ='';return d.B2
return 'Source'
return 'Permittivity'
return 'Elec. Cond. (S/m)';
expRow = d['B'+r];return d['B'+r];
expRow += "\t" + d['AQ'+r]; return d['AQ'+r]
var freq=parseFloat($('#freqField').val())*parseFloat($('#scale').val()); abs1=Math.pow(freq*2*0.000000000003141592*parseFloat(d['AD'+r]),1-parseFloat(d['AE'+r])); var abs2=Math.pow(freq*2*0.000000003141592*parseFloat(d['AG'+r]),1-parseFloat(d['AH'+r])); var abs3=Math.pow(freq*2*0.000003141592*parseFloat(d['AK'+r]),1-parseFloat(d['AL'+r])); var abs4=Math.pow(freq*2*0.003141592*parseFloat(d['AN'+r]),1-parseFloat(d['AO'+r])); var re1=1+abs1*Math.cos(Math.PI/2*(1-parseFloat(d['AE'+r]))); var re2=1+abs2*Math.cos(Math.PI/2*(1-parseFloat(d['AH'+r]))); var re3=1+abs3*Math.cos(Math.PI/2*(1-parseFloat(d['AL'+r]))); var re4=1+abs4*Math.cos(Math.PI/2*(1-parseFloat(d['AO'+r]))); var im1=abs1*Math.sin(Math.PI/2*(1-parseFloat(d['AE'+r]))); var im2=abs2*Math.sin(Math.PI/2*(1-parseFloat(d['AH'+r]))); var im3=abs3*Math.sin(Math.PI/2*(1-parseFloat(d['AL'+r]))); var im4=abs4*Math.sin(Math.PI/2*(1-parseFloat(d['AO'+r]))); var epsil=parseFloat(d['AB'+r])+parseFloat(d['AC'+r])*re1/(re1*re1+im1*im1)+parseFloat(d['AF'+r])*re2/(re2*re2+im2*im2)+parseFloat(d['AJ'+r])*re3/(re3*re3+im3*im3)+parseFloat(d['AM'+r])*re4/(re4*re4+im4*im4); expRow += "\t" + epsil; return sprintf('%.2E',epsil);
var freq=parseFloat($('#freqField').val())*parseFloat($('#scale').val()); abs1=Math.pow(freq*2*0.000000000003141592*parseFloat(d['AD'+r]),1-parseFloat(d['AE'+r])); var abs2=Math.pow(freq*2*0.000000003141592*parseFloat(d['AG'+r]),1-parseFloat(d['AH'+r])); var abs3=Math.pow(freq*2*0.000003141592*parseFloat(d['AK'+r]),1-parseFloat(d['AL'+r])); var abs4=Math.pow(freq*2*0.003141592*parseFloat(d['AN'+r]),1-parseFloat(d['AO'+r])); var re1=1+abs1*Math.cos(Math.PI/2*(1-parseFloat(d['AE'+r]))); var re2=1+abs2*Math.cos(Math.PI/2*(1-parseFloat(d['AH'+r]))); var re3=1+abs3*Math.cos(Math.PI/2*(1-parseFloat(d['AL'+r]))); var re4=1+abs4*Math.cos(Math.PI/2*(1-parseFloat(d['AO'+r]))); var im1=abs1*Math.sin(Math.PI/2*(1-parseFloat(d['AE'+r]))); var im2=abs2*Math.sin(Math.PI/2*(1-parseFloat(d['AH'+r]))); var im3=abs3*Math.sin(Math.PI/2*(1-parseFloat(d['AL'+r]))); var im4=abs4*Math.sin(Math.PI/2*(1-parseFloat(d['AO'+r]))); var sigm=parseFloat(d['AI'+r])+2*3.141592*freq*0.0000000000088542*(parseFloat(d['AC'+r])*im1/(re1*re1+im1*im1)+parseFloat(d['AF'+r])*im2/(re2*re2+im2*im2)+parseFloat(d['AJ'+r])*im3/(re3*re3+im3*im3)+parseFloat(d['AM'+r])*im4/(re4*re4+im4*im4)); expRow += "\t" + sigm + "\n"; if (d['B'+r] != null){ expBody += expRow }; return sprintf('%.2E',sigm);
1C. Gabriel. Compilation of the Dielectric Properties of Body Tissues at RF and Microwave Frequencies, Report N.AL/OE-TR- 1996-0037, Occupational and environmental health directorate, Radiofrequency Radiation Division, Brooks Air Force Base, Texas (USA), 1996.
This website applies cookies to personalize your experience and to make our site easier to navigate. By visiting the site, you are agreeing to this use and to our Privacy Policy.