TISSUE PROPERTIES
vipdatabasebanner.png
Alternative Dielectric Properties

Alternative Dielectric Properties

 

The alternative dielectric properties are based on least square fitted Cole-Cole properties above 1 MHz by Sasaki et al. 20142, the authors used the original measurement data form Gabreil et al., 19961.

Enter a frequency between 1 MHz and 100 GHz and press the 'Calc!' button.

Source: For tissues for which no measurements have been published, values from similar tissues were assigned. The 'Source' column shows the material assignment used for each entry.

 

  Frequency  

d.B2 'Source' 'Permittivity' 'Elec. Cond. (S/m)'
d['B'+r] d['AQ'+r] var freq=parseFloat($('#freqField').val())*parseFloat($('#scale').val()); abs1=Math.pow(freq*2*0.000000000003141592*parseFloat(d['AD'+r]),1-parseFloat(d['AE'+r])); var abs2=Math.pow(freq*2*0.000000003141592*parseFloat(d['AG'+r]),1-parseFloat(d['AH'+r])); var abs3=Math.pow(freq*2*0.000003141592*parseFloat(d['AK'+r]),1-parseFloat(d['AL'+r])); var abs4=Math.pow(freq*2*0.003141592*parseFloat(d['AN'+r]),1-parseFloat(d['AO'+r])); var re1=1+abs1*Math.cos(Math.PI/2*(1-parseFloat(d['AE'+r]))); var re2=1+abs2*Math.cos(Math.PI/2*(1-parseFloat(d['AH'+r]))); var re3=1+abs3*Math.cos(Math.PI/2*(1-parseFloat(d['AL'+r]))); var re4=1+abs4*Math.cos(Math.PI/2*(1-parseFloat(d['AO'+r]))); var im1=abs1*Math.sin(Math.PI/2*(1-parseFloat(d['AE'+r]))); var im2=abs2*Math.sin(Math.PI/2*(1-parseFloat(d['AH'+r]))); var im3=abs3*Math.sin(Math.PI/2*(1-parseFloat(d['AL'+r]))); var im4=abs4*Math.sin(Math.PI/2*(1-parseFloat(d['AO'+r]))); var epsil=parseFloat(d['AB'+r])+parseFloat(d['AC'+r])*re1/(re1*re1+im1*im1)+parseFloat(d['AF'+r])*re2/(re2*re2+im2*im2)+parseFloat(d['AJ'+r])*re3/(re3*re3+im3*im3)+parseFloat(d['AM'+r])*re4/(re4*re4+im4*im4); return sprintf('%.2E',epsil); var freq=parseFloat($('#freqField').val())*parseFloat($('#scale').val()); abs1=Math.pow(freq*2*0.000000000003141592*parseFloat(d['AD'+r]),1-parseFloat(d['AE'+r])); var abs2=Math.pow(freq*2*0.000000003141592*parseFloat(d['AG'+r]),1-parseFloat(d['AH'+r])); var abs3=Math.pow(freq*2*0.000003141592*parseFloat(d['AK'+r]),1-parseFloat(d['AL'+r])); var abs4=Math.pow(freq*2*0.003141592*parseFloat(d['AN'+r]),1-parseFloat(d['AO'+r])); var re1=1+abs1*Math.cos(Math.PI/2*(1-parseFloat(d['AE'+r]))); var re2=1+abs2*Math.cos(Math.PI/2*(1-parseFloat(d['AH'+r]))); var re3=1+abs3*Math.cos(Math.PI/2*(1-parseFloat(d['AL'+r]))); var re4=1+abs4*Math.cos(Math.PI/2*(1-parseFloat(d['AO'+r]))); var im1=abs1*Math.sin(Math.PI/2*(1-parseFloat(d['AE'+r]))); var im2=abs2*Math.sin(Math.PI/2*(1-parseFloat(d['AH'+r]))); var im3=abs3*Math.sin(Math.PI/2*(1-parseFloat(d['AL'+r]))); var im4=abs4*Math.sin(Math.PI/2*(1-parseFloat(d['AO'+r]))); var sigm=parseFloat(d['AI'+r])+2*3.141592*freq*0.0000000000088542*(parseFloat(d['AC'+r])*im1/(re1*re1+im1*im1)+parseFloat(d['AF'+r])*im2/(re2*re2+im2*im2)+parseFloat(d['AJ'+r])*im3/(re3*re3+im3*im3)+parseFloat(d['AM'+r])*im4/(re4*re4+im4*im4)); return sprintf('%.2E',sigm);
1C. Gabriel. Compilation of the Dielectric Properties of Body Tissues at RF and Microwave Frequencies, Report N.AL/OE-TR- 1996-0037, Occupational and environmental health directorate, Radiofrequency Radiation Division, Brooks Air Force Base, Texas (USA), 1996.
2S. Sasaki, K. Wake and S. Watanabe. Development of best fit Cole-Cole parameters for measurement data from biological tissues and organs between 1 MHz and 20 GHz. Radio Science, 41(7):459-472, 2014.