NEWS
25/11/2020

Association between estimated whole-brain radiofrequency electromagnetic fields dose and cognitive function in preadolescents and adolescents

Alba Cabré-Riera, Luuk van Wel, Ilaria Liorni, Arno Thielens, Laura Ellen Birks, Livia Pierotti, Wout Joseph, Llucia Gonzalez, Jesús Ibarluzea, Amparo Ferrero, Anke Huss, Joe Wiart, Loreto Santa-Marina, Maties Torrent, Tanja Vrijkotte, Myles Capstick, Roel Vermeulen, Martine Vrijheid, Elisabeth Cardis, Martin Röösli, Mònica Guxens, International Journal of Hygiene and Environmental Health 2021, February 2021, Volume 231, 113659, online 19 November 2020; doi: 10.1016/j.ijheh.2020.113659

The objective of this study was to investigate the association between estimated whole-brain radiofrequency electromagnetic fields (RF-EMF) dose, using an improved integrated RF-EMF exposure model, and cognitive function in preadolescents and adolescents. A cross-sectional analysis was performed in preadolescents aged 9–11 years and adolescents aged 17–18 years in two population-based birth cohort studies, the Dutch Amsterdam Born Children and their Development Study (n = 1664 preadolescents) and the Spanish INfancia y Medio Ambiente Project (n = 1288 preadolescents and n = 261 adolescents). Overall whole-brain RF-EMF doses (mJ/kg/day) were estimated for several RF-EMF sources together, including mobile and Digital Enhanced Cordless Telecommunications phone calls (named phone calls), other mobile phone uses than calling, tablet use, laptop use (named screen activities), and far-field sources. We also estimated whole-brain RF-EMF doses in these three groups separately (i.e., phone calls, screen activities, and far-field) that lead to different patterns of RF-EMF exposure. We assessed non-verbal intelligence in the Dutch and Spanish preadolescents, information processing speed, attentional function, and cognitive flexibility in the Spanish preadolescents, and working memory and semantic fluency in the Spanish preadolescents and adolescents using validated neurocognitive tests. The estimated overall whole-brain RF-EMF dose was 90.1 mJ/kg/day (interquartile range (IQR) 42.7; 164.0) in the Dutch and Spanish preadolescents and 105.1 mJ/kg/day (IQR 51.0; 295.7) in the Spanish adolescents. Higher overall estimated whole-brain RF-EMF doses from all RF-EMF sources together and from phone calls were associated with lower non-verbal intelligence score in the Dutch and Spanish preadolescents (−0.10 points, 95% CI -0.19; −0.02 per 100 mJ/kg/day increase in each exposure). However, none of the whole-brain RF-EMF doses was related to any other cognitive function outcome in the Spanish preadolescents or adolescents. Our results suggest that higher brain exposure to RF-EMF is related to lower non-verbal intelligence but not to other cognitive function outcomes. Given the cross-sectional nature of the study, the small effect sizes, and the unknown biological mechanisms, we cannot discard that our results are due to chance finding or reverse causality. Longitudinal studies on RF-EMF brain exposure and cognitive function are needed.

The scientific and technical impact of the study can be summarized as:

  • The overall estimated whole-brain RF-EMF dose and specific dose from phone calls were related to lower non-verbal intelligence in preadolescents
  • Whole-brain RF-EMF doses were not related to information processing speed, attentional function, visual attention, and cognitive flexibility in preadolescents or to working memory and semantic fluency in both preadolescents and adolescents
  • Given the small effect size and unknown biological mechanisms, it cannot be discarded that the results might be due to chance
  • The findings open the field to future longitudinal studies to further investigate the association between brain exposure to RF-EMF and cognitive function