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Correction of Numerical Phase Velocity Errors in

Nonuniform FDTD Meshes

Andreas CHRIST†, Jürg FRÖHLICH††, and Niels KUSTER††, Nonmembers

SUMMARY This paper proposes a novel method to correct
numerical phase velocity errors in FDTD meshes with nonuni-
form step size. It enables the complete compensation of the
phase velocity errors introduced by the mesh grading for one fre-
quency and one arbitrary direction of propagation independently
of the mesh grading. This permits the usage of the Total-Field-
Scattered-Field formulation in connection with electrically large
nonuniform FDTD meshes and allows a general reduction of the
grid dispersion errors. The capabilities of the proposed method
are demonstrated with the help of two examples: (1) the fields
in a dielectric sphere illuminated by a plane wave are calculated
and (2) a patch antenna simulation demonstrates that the uncer-
tainty in determining its resonance frequency can be reduced by
about 50%.
key words: nonuniform FDTD, numerical dispersion, total-
field scattered-field

1. Introduction

The finite-difference time-domain (FDTD) method has
proven to be a robust and flexible technique for the so-
lution of various kinds of problems in electromagnetics.
Originally formulated by Yee [1] in 1966, it has gained
increased interest among major researchers during the
last decades [2]–[4], developing it into one of the most
preferred methods for the solution of complex electro-
magnetic problems [5]–[7]. The FDTD algorithm uses
a central-difference scheme of Maxwell’s equations and
can therefore yield solutions of second order accuracy.
However, this central difference scheme requires the use
of equidistant mesh steps, which renders the correct
modeling of structures with fine geometrical details in-
feasible or at least computationally expensive. One
common resort to this problem is to use nonuniform
mesh steps.

The drawback of nonuniform FDTD meshes is the
loss of the central difference and therefore of the sec-
ond order accuracy. Although the algorithm retains its
global second order convergence, as shown in [8], local
first order errors do influence the simulation outcome,
depending on the cell size and grading ratio. Never-
theless, various studies have shown that the savings in
computational power clearly outweigh the impact of the
grading on the accuracy of the results [9]–[11]. Other
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authors [12], [13] have heuristically derived rules for the
mesh generation to keep the local error introduced by
the grading within certain limits.

In addition, several suggestions have been made
to further reduce or overcome the errors in nonuniform
meshes (See, e.g., [14], [15]). In all these suggestions,
one or two additional field components are incorporated
into those finite-difference equations which lose their
central-difference characteristics because of the irregu-
lar cell spacing. In order to improve the characteristics
of the algorithm, the authors introduce different weight-
ing coefficients for these field components. An overview
of these methods and their efficiency can be found in
[15].

One of the main error sources in the FDTD algo-
rithm is numerical dispersion. Dispersion errors have
been thoroughly studied for uniform meshes, and a de-
tailed analysis can be found in [16]. The authors of
[17], [18] and [19] suggest modifying the material coef-
ficients in order to reduce the average dispersion error
in the grid. This method, however, can efficiently be
used only with equidistantly spaced meshes.

In [20] an approach is made to describe the influ-
ence of the mesh grading on the dispersion error. The
authors derive an expression for the numerical propaga-
tion constant in nonuniform meshes from the dispersion
relation of the uniform FDTD algorithm.

This paper presents a more rigorous way to de-
rive the numerical phase velocity based directly on the
update equations of the nonuniform FDTD algorithm.
Thereby, it is shown that the grading of the mesh leads
to a complex numerical wave number causing spuri-
ous amplification or attenuation. In order to reduce
these additional errors, a novel method is proposed by
which the accuracy of the original second order central-
difference scheme can be fully recovered for a particular
frequency and propagation direction. Furthermore, this
enables the application of the Total-Field-Scattered-
Field formulation [21] on electrically large scatterers in
nonuniform meshes.

The remainder of this paper is divided into four
major sections. First, the dispersion effects in nonuni-
form meshes are analyzed in one dimension. The next
section introduces and discusses the phase velocity cor-
rection. The third section deals with its extension to
three dimensions. Eventually, the performance of the
novel method is demonstrated with the help of two ex-
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amples: a dielectric sphere illuminated by a plane wave,
and the feedpoint impedance calculation of a patch an-
tenna. In order to keep the paper self-contained, the
basic dispersion properties of the FDTD algorithm are
briefly reviewed within the bounds of the corresponding
sections.

2. Numerical Dispersion in Nonuniform FDTD
Meshes in One Dimension

In addition to the dispersion errors of the uniform
FDTD algorithm, two different effects increase the nu-
merical phase distortion in the nonuniform mesh: First
of all, the loss of the central difference reduces the ac-
curacy of the finite-difference equations. Secondly, the
majority of the mesh cells is updated with a Courant
factor of less than 1, because the time step must be cho-
sen according to the size of the smallest cell. Since these
mechanisms are the same for the one-dimensional and
the three-dimensional formulations of the FDTD algo-
rithm, this section focuses on the analysis of the numer-
ical dispersion in one-dimensional nonuniform meshes.

2.1 Nonuniform Dispersion Equation

For staggered nonuniform meshes as in Fig. 1, the
FDTD update equations can be written as

E|n+1i = caiE|ni + cbi

(
H|n+ 1

2
i+ 1

2
−H|n+ 1

2
i− 1

2

)
(1)

and

H|n+ 1
2

i+ 1
2

= dai H|n− 1
2

i+ 1
2

+ dbi (E|ni+1 − E|ni ) (2)

with the update coefficients

cai =
2 ε− σ∆t
2 ε+ σ∆t

(3)

cbi = − 4 ∆t
(∆xi + ∆xi−1) (2 ε+ σ∆t)

(4)

dai =
2µ− ρ∆t
2µ+ ρ∆t

(5)

dbi = − 2 ∆t
∆xi (2µ+ ρ∆t)

. (6)

In Eqs. (5) and (6), ρ represents the magnetic losses.
For this formulation of the Yee-algorithm, only the ac-
curacy of Eq. (1) reduces to first order, whereas Eq. (2)
retains its central difference.

Fig. 1 One-dimensional nonuniform FDTD mesh.

The dispersion equation for this formulation of the
Yee algorithm can be derived by Fourier-transforming
Eqs. (1) and (2) into k,ω−domain. Eliminating the
complex E− and H−field amplitudes yields

−2j cbi dbi sin
kν ∆xi

2
(e−j

kν ∆xi
2 − ej

kν ∆xi−1
2 )

= (ej
ω0 ∆t

2 − cai e
−j

ω0 ∆t

2 )

· (ej
ω0 ∆t

2 − dai e
−j

ω0 ∆t

2 ) (7)

with kν as the numerical wave number at the frequency
ω0.

If cai, cbi, dai and dbi are replaced by the expres-
sions given in Eqs. (3)–(6) and both the electric and the
magnetic losses are neglected, Eq. (7) reduces to

1
(c0∆t)2

sin2
ω0 ∆t

2

=
j

∆xi (∆xi + ∆xi−1)
sin

kν ∆xi

2

· (e−j
kν ∆xi

2 − ej
kν ∆xi−1

2 ). (8)

For a uniform mesh with ∆xi = ∆xi−1 = ∆x, Eq. (8)
yields the conventional form of the dispersion equation
for the one-dimensional mesh:

1
∆x2

sin2
kν ∆x

2
=

1
(c0∆t)2

sin2
ω0∆t

2
. (9)

2.2 Properties of the Dispersion Equation

Before discussing the numerical dispersion in nonuni-
form meshes, two basic characteristics of the uniform
dispersion Eq. (9) should be pointed out. At the max-
imum stable time step ∆tmax = ∆x/c0, Eq. (9) re-
duces to kν = ±ω0/c0 and the algorithm is com-
pletely dispersionless. Defining the Courant factor as
CF = ∆t/∆tmax with ∆t as the actual time step used
for the updating and for applying CF < 1, the algo-
rithm becomes dispersive. For small time steps, it con-
verges rapidly to the following expression:

cν
c0

=
π∆x

λ arcsin π∆x
λ

(10)

with cν as the numerical phase velocity. Figure 2
shows to which extent the dispersion error for a given
mesh step size grows as the Courant factor decreases.
The error maximum (Eq. (10)) is almost reached at
CF = 0.25. For high grid resolutions (e.g. better
than λ/20), it remains generally small. In nonuni-
form meshes, the upper limit of the dispersion error
is reached if the largest cells in the grid are four times
as large as the smallest cell, which determines the time
step. But even in uniform meshes, this effect increases
the dispersion error. E. g., a material with an εr of 16
is also updated with a CF of 0.25 if regions of vacuum
are present in the grid.
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Fig. 2 Numerical phase velocity error for different Courant fac-
tors CF as a function of the ratio of wavelength and cell size in
a one-dimensional grid.

Table 1 Phase and amplitude errors for a plane wave of 1GHz
(k0 = 20.96/m) in differently graded meshes with a length of
0.3m,∆xmin = 3mm,∆xmax = 30mm.

Grad. Grad. 30mm keff [1/m] Phase Ampl.
Steps Ratio Steps Error Error
27 1.1:1 none∗ 21.08+j 0.08 0.57% 2.4%
10 1.3:1 7 21.22+j 0.09 1.27% 2.9%
6 1.5:1 9 21.25+j 0.10 1.40% 3.0%
3 2.5:1 10 21.28+j 0.11 1.52% 3.4%
2 9:1 10 21.28+j 0.14 1.55% 4.3%

∗With a grading ratio of 1.1:1, the maximum grid step of 30mm
is not reached within the grid length of 300mm.

If ∆xi �= ∆xi−1, Eq. (8) can only be solved nu-
merically. In this case, the numerical wave number
kν will be complex. A wave propagating into the
direction of increasing cell size (∆xi > ∆xi−1) will
be amplified. Propagating into the opposite direction
(∆xi < ∆xi−1), the wave will be attenuated. Since
an expression for the complex kν cannot be given ana-
lytically, the phase errors in nonuniform meshes cannot
conveniently be expressed in terms of cell size and grad-
ing ratio. Therefore it appears to be more appropriate
to present effective numerical wave numbers for spe-
cific cases of differently graded meshes. Table 1 shows
the effective phase and amplitude errors which a plane
wave suffers after traveling through a one-dimensional
graded grid calculated with Eq. (8) considering the nu-
merical wave number of each grid cell. The plane wave
has a frequency of 1 GHz and the grid size is 0.3 m. The
step size in the grid grows as a geometrical series from
3 mm to 30 mm with different grading ratios. As soon
as the maximum cell size has been reached, the grid
step is kept constant. For the different meshes, the ef-
fective numerical wave number is defined as the average
of the numerical wave numbers of each cell

keff =

n∑
i=0

kνi
∆xi

n∑
i=0

∆xi

, (11)

with kνi
as a function of ∆xi and ∆xi−1. The results

in Table 1 show that large cells significantly contribute
to the eventual phase error. Generally, the amplitude
error is in the order of magnitude of three percent. The
amplification is restricted to the graded region of the
mesh. These findings will be confirmed by numerical
experiments in Sect. 3.2.

3. Phase Velocity Correction

The basic idea of the phase velocity correction is to use
the wave number and wave impedance instead of the
material properties to calculate the update coefficients.
Although the wave number is - of course - frequency
dependent, it will be demonstrated that the phase ve-
locity correction can yield an overall reduction of the
dispersion errors in nonuniform meshes.

3.1 Phase Velocity Corrected Nonuniform FDTD
Algorithm

In order to derive the phase velocity corrected form of
the nonuniform FDTD algorithm, the E-field update
Eq. (1), which has lost its second order accuracy, is
rewritten with separate update coefficients for the fi-
nite difference terms:

E|n+1i = caiE|ni + cb1i
H|n+ 1

2
i+ 1

2
− cb2i

H|n+ 1
2

i− 1
2

(12)

For simplicity, the electric losses will be assumed to be
zero in the remainder of this section (cai = 1). Fourier-
transforming Eq. (12) into k,ω−domain yields

2j E0 sin
(
ω∆t

2

)

= H0

(
cb1i

e−j
ki∆xi

2 − cb2i
ej

ki∆xi−1
2

)
(13)

with ki as the wave number for the frequency ω0 in
the medium of the cell with the index i. Replacing the
E-field amplitude E0 by Zi H0 leads to†

2j Zi sin
ω∆t

2
=cb1i

e−j
ki∆xi

2 −cb2i
ej

ki∆xi−1
2 . (14)

This complex equation can be solved for the two real
update coefficients cb1i

and cb2i
:

cb1i
= −2Zi sin ω0∆t

2 cos ki∆xi−1
2

Xi
(15)

†Zi is the wave impedance of the medium of the cell
indexed i. Since the losses are assumed to be zero, ki and
Zi are real numbers.
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cb2i
= −2Zi sin ω0∆t

2 cos k0∆xi

2

Xi
(16)

with

Xi = sin
ki∆xi

2
cos

ki∆xi−1
2

+ sin
ki∆xi−1

2
cos

ki∆xi

2

Here, ω0 is the optimization frequency of the phase ve-
locity correction at which the algorithm works com-
pletely distortionless, and Zi is the wave impedance of
the medium at the corresponding location of the field
component in the grid.

Since the H-field update Eq. (2) keeps its central
difference in the nonuniform mesh, it is not necessary
to use separate update coefficients. The H-field update
coefficient dbi can be calculated in the same manner as
above, yielding

dbi = − sin ω0∆t
2

Zi sin ki∆xi

2

. (17)

If the mesh spacing is uniform (∆xi = ∆xi−1) and
a Courant factor of one is used, Eqs. (15)–(17) con-
verge to the expressions for the conventional FDTD
algorithm Eqs. (4) and (6). Since the maximum stable
time step in nonuniform meshes is determined by the
smallest mesh cell, the same stability criterium as for
the original Yee-algorithm can be applied.

For lossy material, the coefficients cai and dai must
be considered in the Fourier transforms of the update
equations, leading to expressions for the update coeffi-
cients different from Eqs. (15)–(17). In order to derive
the update coefficients for lossy media, cai and dai can
be used as given in Eqs. (3) and (5). It is important
to note that separate coefficients db1i

and db2i
have to

be introduced for the H-field update equation, if lossy
media are used.

3.2 Dispersion Properties of the Corrected Algorithm

The numerical dispersion of the corrected algorithm can
be calculated as described in Sect. 2.1. According to
Eq. (10), an expression for the phase velocity error for
small time steps (CF → 0) can be derived. In order
to obtain a real value for the numerical phase velocity,
uniform mesh spacing (∆xi = ∆xi−1) is assumed. The
phase velocity error can then be written as

cν
c0

=
ω0∆x

2 c0 arcsin( ω
ω0

sin ω0∆x
2 c0

)
. (18)

Figure 3 shows the dispersion properties of the phase
velocity corrected algorithm in comparison to those of
the conventional one. For all mesh step sizes, the cor-
rected algorithm yields the accurate phase velocity at
the optimization frequency ω0. Although the algorithm

Fig. 3 Numerical phase velocity error for CF → 0 with and
without correction for 1GHz and different cell sizes in a one-
dimensional grid.

remains dispersive, it shows a reduced phase velocity
error for all frequencies above ω0. At lower frequen-
cies, the phase velocity error of the conventional FDTD
scheme approaches zero, whereas it increases for the
corrected algorithm. However, from Eqs. (10) and (18)
ω0 can be calculated such that an overall dispersion
reduction is achieved in the frequency range of interest.

From Fig. 3 also follows, that there is a certain
bandwidth within which the phase errors of the cor-
rected algorithm remain below a given maximum. This
bandwidth depends on the ratio of cell size and wave-
length. If e.g. the resonance frequency of a structure
is only roughly known (from theory or from a non-
corrected FDTD simulation), its accurate value can be
determined by a simulation with the corrected algo-
rithm. An approximate value for the resonance fre-
quency can be used as optimization frequency ω0 and
the maximum cell size can be limited such that the ex-
pected deviations are covered by the bandwidth within
which the errors of the corrected algorithm are close to
zero.

Figure 4 shows the wave front of a plane wave
with a linearly rising envelope after propagating 12 m
through a nonuniform mesh. The wave simulated with
the corrected algorithm travels with the right phase ve-
locity, whereas the numerical phase velocity of the con-
ventional FDTD scheme is too low. The wave front
calculated with the corrected algorithm is distorted as
well because of transients in the signal.

Figure 5 demonstrates the amplitude distortion
due to the mesh grading†. Whereas the amplitudes
of the waves in the simulations without correction rise
or fall as predicted in Sect. 2.2, the wave keeps its am-

†In order to avoid spurious reflections from the grid
boundaries, the size of the one dimensional grid has been
chosen such that the reflected waves did not reach the range
depicted in Fig. 5.
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Fig. 4 Front of a plane wave (1GHz) with linear envelope in a
graded mesh (∆xmax = λ/10, ∆xi/∆xi−1=1.0025) after propa-
gating a distance of 12m from the source.

Fig. 5 Amplitude of a plane wave of 1GHz in different graded
meshes with and without dispersion correction. q = ∆xi/∆xi−1,
∆xmin = 3mm and ∆xmax = 30mm.

plitude if the phase velocity correction is applied. The
complete compensation of the spurious amplification or
attenuation is of course only possible at the optimiza-
tion frequency ω0.

4. Extension to Three Dimensions

The dispersion characteristics of the one-dimensional
finite-difference algorithm as described in Sect. 2 are
also true for its three-dimensional formulation. Addi-
tionally, the numerical phase velocity error is dependent
on the propagation direction.

In three dimensions, the phase velocity correction
also allows error correction for a particular frequency.
However, the anisotropic dispersion characteristics of
the FDTD-algorithm remain, though it is possible to
compensate the phase velocity errors for an arbitrary

Fig. 6 Numerical phase velocity error as a function of ϕ and ϑ
for a cell size of λ/10 and CF → 0. Average error ς = 0.54%.

angle of propagation.

4.1 Numerical Dispersion of the Three-Dimensional
Algorithm

The generalized form of the dispersion equation of the
three-dimensional FDTD scheme (A· 1) is given in Ap-
pendix. Inserting the conventional update coefficients
[2] into Eq. (A· 1) yields the three-dimensional disper-
sion equation for the uniform grid:

1
(c0∆t)2

sin2
ω0 ∆t

2
=

1
∆x2

sin2
ux kν ∆x

2

+
1

∆y2
sin2

uy kν ∆y
2

+
1

∆z2
sin2

uz kν ∆z
2

(19)

with the numerical wave vector

kν = kν ·

 ux

uy

uz




and ux, uy and uz as the coefficients of the unit vector
of the direction of kν .

Figure 6 shows the numerical phase velocity er-
ror as a function of ϕ and ϑ in a uniform mesh for
∆x = ∆y = ∆z = λ/10 and CF = 1. A wave in the
mesh propagates along the cell diagonal without phase
distortion, whereas the maximum phase velocity error
occurs for propagation along the axes. From Eq. (19)
it is clear that the FDTD algorithm is dispersive for all
directions but the cell diagonal. For CF → 0, the dis-
persion properties of the algorithm increase up to 1.7%
(Fig. 7). These figures may appear small, but a phase
velocity error of only 1.7% will lead to a complete phase
inversion after only 30 wavelengths (See also Fig. 4). In
order to allow better comparison of the 3D-dispersion
properties, the following definition of the average phase
velocity error of a mesh cell with the indices i, j and k
will be used:
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Fig. 7 Numerical phase velocity error as a function of ϕ and ϑ
for a cell size of λ/10 and CF → 0. Average error ς = 1.06%.

ςi,j,k =

√√√√√ 2
π

π
2∫
0

π
2∫
0

(
cνi,j,k

(ϕ, ϑ)
c0

−1
)2

sinϑ dϕ dϑ (20)

For a Courant factor of 1 and a cell size of λ/10, the av-
erage phase velocity error ς is 0.54%, and if the Courant
factor approaches zero, ς increases to 1.06%.

4.2 Corrected Update Coefficients

The corrected update coefficients for the three-
dimensional algorithm are derived in a similar way as
for the one-dimensional form. A detailed demonstra-
tion will be given for the Ey-update equation with sep-
arate coefficients

Ey|n+1i,j+ 1
2 ,k

= cai,j,k Ey|ni,j+ 1
2 ,k

+ cbz1i,j,k
Hx|n+

1
2

i,j+ 1
2 ,k+ 1

2

− cbz2i,j,k
Hx|n+

1
2

i,j+ 1
2 ,k− 1

2

− cbx1i,j,k
Hz|n+

1
2

i+ 1
2 ,j+ 1

2 ,k

+ cbx2i,j,k
Hz|n+

1
2

i− 1
2 ,j+ 1

2 ,k
. (21)

The E-field components in this equation are substituted
by

Ey|ni,j,k = Zm (uxHz|ni,j,k − uz Hx|ni,j,k) (22)

with Zm as the wave impedance of the medium at the
corresponding location of the mesh mi,j,k. ux and uz

are the x- and z-components of the unit vector of the
propagation direction for which the phase velocity er-
rors are to be compensated. Fourier-transforming the
resulting expression into k,ω-domain then yields

Zm (uxHz − uz Hx) (ej
ω0 ∆t

2 − cai,j,k e
−j

ω0 ∆t

2 )

= Hx (cbz1i,j,k
e−j

uz km ∆zk
2

− cbz2i,j,k
ej

uz km ∆zk−1
2 )

−Hz (cbx1i,j,k
e−j

ux km ∆xi
2

− cbx2i,j,k
ej

ux km ∆xi−1
2 ) (23)

with km as the wave number at the frequency of op-
timization ω0 in the medium indexed mi,j,k. Equa-
tion (23) can be split up into two separate expres-
sions containing either the Hx- or the Hz-components,
which can then be eliminated. The equation for the
Hz-components reads

ux Zm (ej
ω0 ∆t

2 − cai,j,k e
−j

ω0 ∆t

2 )

= cbx2i,j,k
ej

ux km ∆xi−1
2

− cbx1i,j,k
e−j

ux km ∆xi
2 . (24)

As already mentioned in Sect. 3.1, cai,j,k can be
used as in the conventional FDTD formulation. The re-
sulting complex equation can then be solved for the two
remaining real update coefficients cbx1i,j,k

and cbx2i,j,k
.

Solving for cbx1i,j,k
in a lossless medium (cai,j,k = 1)

yields

cbx1i,j,k
=

2uxZm sin ω0∆t
2 cos uxkm∆xi−1,j,k

2

Xi,j,k
(25)

with

Xi,j,k = sin
uxkm∆xi,j,k

2
cos

uxkm∆xi−1,j,k
2

+ sin
uxkm∆xi−1,j,k

2
cos

uxkm∆xi,j,k

2
.

The coefficients of the remaining update equations are
derived analogously.

For propagation directions along one of the mesh
axes, the unit vector coefficients ux, uy or uz can be
zero. Calculating the limit of Eq. (25) for ux,y,z → 0
then yields

cbx1i,j,k
=

4Zm sin ω0∆t
2

km(∆xi,j,k + ∆xi−1,j,k)
. (26)

4.3 Dispersion Properties of the Corrected Algorithm

The numerical phase velocity of the corrected algorithm
retains its anisotropic characteristics. However, as in
the one-dimensional scheme a complete compensation
of the grading effects can be achieved for one frequency
ω0. In this case the distribution of the phase velocity
error is the same as for a homogeneous mesh with CF =
1 (See Fig. 6), and the accuracy of the second-order
scheme is therefore recovered.

A comparison between the averaged error ς of
the corrected and the conventional three-dimensional
FDTD algorithms for ∆t → 0 is shown in Fig. 8. The
coefficients are optimized for a frequency of 1 GHz and
propagation angles along the diagonal of a cube. The
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Fig. 8 Averaged phase velocity error ς for a cell size of λ/10
at 1GHz with and without phase velocity correction for 1GHz.

side lengths of the cell are λ/10. The error ς of the
corrected algorithm has a minimum at approximately
700 MHz, whereas the error of the conventional scheme
steadily approaches zero for lower frequencies. For all
frequencies above 700 MHz, the difference between the
errors of the corrected algorithm and the conventional
one is an almost constant value of approximately 0.5%.
This means that an error reduction of about 50% can
be achieved at the optimization frequency.

4.4 Plane Wave Excitation

In the finite calculation domain of a Yee grid, plane
wave excitation is realized using the Total-Field-
Scattered-Field (TFSF) formulation [21]. Here, only
a limited area of the mesh, the total-field region, is il-
luminated with a plane wave. The analytical solution
of the plane wave is then subtracted at the boundaries
of this region such that the outer part of the grid only
contains the scattered field. This requires the precise
knowledge of the amplitude and the phase of the excit-
ing plane wave. For uniform meshes, the exciting wave
can be calculated using the numerical phase velocity for
the particular direction of propagation. For nonuniform
meshes, this is an infeasible task, because the phase
distortion has to be considered for all the cells the ex-
citing wave traverses. If the mesh is electrically large,
subtracting the analytical solution of a plane wave will
generate spurious field components at the boundaries
of the total-field region because of the phase distortion
which the wave has suffered propagating through the
nonuniform mesh. The application of the phase velocity
corrected algorithm allows a plane wave to propagate
through an arbitrarily spaced mesh without any phase
distortion and therefore enables the usage of the TFSF
formulation for electrically large nonuniform meshes.

Figure 9 shows the E-field outside the total field
region of an empty nonuniform mesh with a maximum

Fig. 9 Spurious E-field in the scattered field region caused by
numerical dispersion at an incidence angle of ϕ0 = 45◦ and ϑ0 =
54.7◦ without phase velocity correction. The maximum cell size
is λ/10.

Fig. 10 Amplitude of the spurious E-field along the x-axis at
the boundary of the total field region (y = −0.3m, see Fig. 9).

cell size of λ/10. The side length of the total field re-
gion is approximately two wavelengths. The wave has
traveled along the diagonal of the cubical total field
region (

√
3λ) with a phase velocity error of approxi-

mately 0.6% (Fig. 7). Since there is no scatterer in the
mesh, the fields occurring outside this region are due to
the above mentioned phase differences between the an-
alytical field and the distorted wave which has traveled
through the nonuniform grid. In this example, spuri-
ous E-fields with an amplitude of up to 5.0% of the
total field occur (Fig. 9). In Fig. 10, the improvement
achieved by the corrected algorithm is shown. The
maximum E-field components outside the total field re-
gion have an amplitude of less than 0.8% of the excited
plane wave. The remaining error is due to the enve-
lope of the exciting signal. It contains components of
very high frequencies which do not propagate properly
through the mesh.
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5. Examples

The improvements which can be achieved with the
phase velocity corrected algorithm will be shown with
the help of two examples: First, the field distribution
in a dielectric sphere illuminated by a plane wave will
be calculated. As an application, the influence of the
mesh grading on the feedpoint impedance of a patch
antenna will be demonstrated.

5.1 Dielectric Sphere

Since FDTD has often been used to calculate the ab-
sorption of electromagnetic energy in biological objects
[22], [23], the plane wave excitation using the TFSF
formulation is demonstrated with the help of a sphere
with the dielectric parameters of brain tissue (εr=42,
σ=0.85 S/m) [24]. The sphere has a radius of 0.1 m
(approximately the dimensions of a human head) and
is illuminated with a plane wave of 900 MHz. The di-
rection of the Poynting vector of the incident wave is
set to ϕ0 = 45◦ and ϑ0 = 54.7◦. A reference calcula-
tion is performed with the Generalized Multipole Tech-
nique (GMT) [25]. For an application of this kind, the
numerical uncertainties of GMT can be neglected with
respect to the analytical solution [26]. Figure 11 shows
the dielectric sphere and the polarization of the incom-
ing wave, together with the field distribution calculated
with GMT.

The FDTD model of the discretized sphere is
shown in Fig. 12. The dimensions of the computational
domain are 0.6× 0.6× 0.6 m3. The maximum grid step
in free space is 20 mm. In the sphere it is limited to
5 mm because of the shorter wavelength in the dielec-
tric. The minimum grid spacing is 1 mm. The total
field area is placed closely around the sphere in order
to keep it small in terms of wavelengths to reduce the

Fig. 11 Distribution of the electric field in a dielectric sphere
(εr=42,σ=0.85 S/m) excited by a plane wave of 900MHz and
1V/m.

errors due to the phase distortions. The propagation
direction of the plane wave of ϕ0 = 45◦ and ϑ0 = 54.7◦

was chosen to keep the phase errors of the non-corrected
calculation as small as possible. The mesh consists of
approximately 650 000 cells. PML absorbing boundary
conditions [27] are used to truncate the mesh.

Since the FDTD algorithm uses a rectilinear grid,
high errors occur due to staircasing effects if round ob-
jects are modeled. These errors are not the subject of
this paper and will therefore not be dealt with any fur-
ther. Figures 13 and 14 show the error of the E-field
amplitude inside the sphere for a calculation with the
conventional FDTD algorithm and with phase velocity
correction. The maximum error in the non-corrected
simulation compared to the reference solution at the
same location is approximately 25%. By application
of the phase velocity corrected algorithm, the overall
error of the field distribution in the sphere can be sig-
nificantly reduced. Figure 14 shows maximum errors of
less than 9%.

Fig. 12 Dielectric sphere with TFSF excitation in a
nonuniform mesh of the size 0.6× 0.6× 0.6m3.

Fig. 13 Absolute value of the E-field error in the z-normal
plane of the dielectric sphere calculated without phase velocity
correction.
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Fig. 14 Absolute value of the E-field error in the z-normal
plane of the dielectric sphere calculated with phase velocity cor-
rection.

5.2 Patch Antenna

In order to obtain reliable results for antenna simu-
lations with FDTD, the calculation domain must be
chosen such that the reactive field of the antenna is
not cut off by the absorbing boundary conditions. This
generally leads to a large number of mesh cells even if
nonuniform mesh steps are used. Because of the re-
duced phase velocity in larger cells, the calculated res-
onance frequencies of the antenna will be too low [28].
This error can be reduced by the application of the
phase velocity corrected algorithm.

The described effect is demonstrated with the help
of a simple patch antenna structure for a frequency of
1 GHz. It consists of two perfectly conducting plates
suspended in air. The exact dimensions of the antenna
are given in Fig. 15. The feedpoint impedance of the
antenna is calculated using a nonuniform mesh with a
maximum grading ratio ∆xi/∆xi−1 of 1.8 (See Fig. 16).
On all material boundaries, the step size in the mesh
is reduced to a minimum of 2 mm. The maximum step
size is limited to 30 mm, which corresponds to λ/10 at
1 GHz. The antenna is placed into a computational do-
main of 0.6 × 0.6 × 0.6 m3 which leads to a number of
approximately 90 000 mesh cells. A reference calcula-
tion is carried out with a high resolution uniform mesh.
In order to avoid influences of different discretizations
of the material discontinuities, the uniform mesh uses
an overall cell size of 2 × 2 × 2 mm3. Otherwise, the
edges and corners of the metal patches of the antenna
would require additional corrections [29]–[31]. The uni-
form mesh has the same dimensions as the graded mesh
and therefore consists of 27 million cells. Again, the
meshes are truncated with PML absorbing boundary
conditions.

Because of the high resolution of the uniform mesh,
the numerical phase velocity errors are negligible. For
the largest cells in the nonuniform mesh, the smallest

Fig. 15 Patch antenna for 1GHz. The plate distance is 6mm.

Fig. 16 Patch antenna in a nonuniform mesh with a size of
0.6× 0.6× 0.6m3 and a maximum grading ratio of 1.8.

average dispersion error ς of 0.3 is reached at an op-
timization frequency of 1.3 GHz (See also Fig. 8). The
minimum of ς can be found numerically from Eq. (A· 1).

The calculated real and imaginary parts of the
feedpoint impedance for the different meshes and op-
timization frequencies are displayed in Figs. 17 and 18.
The conventional nonuniform FDTD algorithm calcu-
lates a resonance frequency approximately 2.5% below
the reference result in the high resolution uniform mesh.
The phase velocity corrected algorithm reduces this er-
ror by approximately 50%.

6. Conclusion

A novel method has been proposed to correct the nu-
merical phase velocity errors in nonuniform FDTD
meshes. The method is based on a reformulation of the
FDTD update equations with separate coefficients for
the finite-difference terms. The numerical properties of
the method have been analyzed both theoretically and
with simulation examples.

The analysis of the dispersion properties of the
nonuniform FDTD algorithm has shown that the grad-
ing of the mesh leads to a complex numerical wave num-
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Fig. 17 Real part of the feedpoint impedance for optimization
frequencies f0 of 1GHz and 1.35GHz and without phase velocity
correction in comparison to the reference calculation.

Fig. 18 Imaginary part of the feedpoint impedance for opti-
mization frequencies f0 of 1GHz and 1.35GHz and without phase
velocity correction in comparison to the reference calculation.

ber, which is the reason for spurious amplification or
attenuation and increased phase errors.

The method proposed in this paper yields a general
reduction of the numerical dispersion in nonuniform
meshes and completely compensates phase and ampli-
tude errors for a particular frequency of optimization.
For this frequency, the accuracy of the original second
order scheme is recovered. Additionally, a direction
can be chosen into which a plane wave can propagate
completely distortionless. This also enables the use of
the TFSF formulation together with electrically large
nonuniform meshes.

Two benchmark examples, a patch antenna simu-
lation and a dielectric sphere under incidence of a plane
wave, have been conducted. They have shown that
the novel phase velocity corrected algorithm yields the
same flexibility and robustness as the original FDTD

scheme and significantly increases the accuracy of the
simulation results in nonuniform meshes.
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[8] P. Monk and E. Süli, “Error estimates for Yee’s method
on non-uniform grids,” IEEE Trans. Magn., vol.30, no.5,
pp.3200–3203, Sept. 1994.

[9] D.H. Choi and W.J.R. Hoefer, “A graded mesh FD-TD
algorithm for eigenvalue problems,” 17th European Mi-
crowave Conference Digest, pp.413–417, 1987.
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Appendix: Dispersion Equation of the
Corrected Algorithm

The generalized form of the three-dimensional FDTD
dispersion equation can be derived by Fourier-

transforming the update equations with separate co-
efficients (See Eq. (21)) into the k, ω-domain. The de-
terminant of the resulting system of equations for the
E- and H-fields has then to be set to zero and solved
for the numerical wave number kν .∣∣∣∣∣∣∣∣∣∣∣

0 a12 a13 a14 0 0
a21 0 a23 0 a25 0
a31 a32 0 0 0 a36
a41 0 0 0 a45 a46
0 a52 0 a54 0 a56
0 0 a63 a64 a65 0

∣∣∣∣∣∣∣∣∣∣∣
= 0 (A· 1)

with

a12 = −a21 = cbz2i,j,k
e−j

uz kν ∆zk
2

− cbz1i,j,k
ej

uz kν ∆zk
2
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ej
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2
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e−j
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2
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ej

ux kν ∆xi
2
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e−j
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ej

uz kν ∆zk
2

a46 = −a64 = dby2i,j,k
e−j
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