Library of RF exposure from generic birdcages for comprehensive implant-safety evaluation

Eugenia Cabot Earl Zastrow Niels Kuster

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

DUNDATION

RF-birdcage exposure library

- to promote convergence and uniformity of exposure conditions for implant-safety evaluation
- support regulatory and compliant review
- expansion- and version-control- friendly
 - 6 virtual patients
 - 10 (cylindrical) coils
 - 64 and 128 MHz

RF-birdcage exposure library

64 MHz	LENGTH	40-cm	50-cm	60-cm	70-cm
	60-cm		110.6	104.5	97.5
	70-cm	106.9	100.0	96.0	91.0
	75-cm		96.9	92.0	87.3

128 MHz	LENGTH	40-cm	50-cm	60-cm	70-cm
	60-cm		25.1	22.1	17.8
	70-cm	25.1	22.1	19.9	16.4
	75-cm		21.7	18.9	15.4

All values provided in pF

RF-birdcage exposure library

Cabot et al., birdcage library

MR Safety: Tuesday May 10th, 2016 ISMRM 2016, Singapore

Induced EMF evaluation

RF-induced implant heating

RF-induced implant heating

RF-induced implant heating

ΔT @ first-level controlled mode exposure limit*

		DBS (R)	DBS (L)	Pacemaker (R)	Pacemaker (L)
ad	ΔT w/ implant (K)	92.5	96.4	1.3	6.3
he	ΔT w/o implant (K)	<1	<1	<1	<1
rax	ΔT w/ implant (K)	11	22.7	7.9	11
tho	ΔT w/o implant (K)	<1	<1	<1	<1

*head imaging position: headSAR = 3.2 W/kg *thorax imaging position: wbSAR = 4.0 W/kg

in vivo incident to implants and safety limits derivation

in vivo incident to implants and safety limits derivation

Application: safety evaluation from RF-heating

implant-heating: f(anatomy, RF-coil, imaging position, routings)
different permutations are needed for safety evaluation

Application: safety evaluation from RF-heating

- implant-heating: f(anatomy, RF-coil, imaging position, routings)
- different permutations are needed for safety evaluation

Application: implant-heating mitigation during MRI

establish safety margin from theoretical bounds

establish patient-specific safety-concept

Application: implant-heating mitigation during MRI

establish safety margin from theoretical bounds
establish patient-specific safety-concept

IT FOUNDATION

CP:

max. heating:

Future considerations

 population expansion
more body types and postures are needed for comprehensive evaluation

- on-line data solution
 - data version control feasible
 - support regulatory and compliant review